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J. Phys. A: Math. Gen. 17 (1984) L395-L398. Printed in Great Britain 

LETTER TO THE EDITOR 

Comments on the solution of the spherical Raman-Nath 
equation 

P Boscot, G DattolitS and M RichettaPll 
t Physics Department and Quantum Institute, University of California at Santa Barbara, 
Santa Barbara, California 93106, USA 
5 ENEA Dip TIB, Divisione Fisica Applicata, cp 65,  00044 Frascati, Rome, Italy 

Received 31 January 1984 

Abstract. We present a preliminary investigation of the spherical Raman-Nath equation, 
and discuss the connections between its solution and previously known cases. 

As has already been pointed out in a number of previous papers (Dattoli and Renieri 
1984, Bosco and Dattoli 1983, Ciocci et al 1984, Dattoli et a1 1984), the Raman-Nath 
(RN) type of equations has become increasingly popular, because they are useful in 
describing a large number of physical phenomena. They also are topics from the purely 
mathematical point of view, because it has been shown (Dattoli et al 1984) how they 
may be useful for the solution of a class of difference equations. In this letter we would 
like to present a preliminary discussion of a new type of RN equations, which will be 
called, from now on, the spherical version (SRN), and are useful in analysing a few 
physical problems. Indeed they account for the time evolution of coherent Bloch states 
(Arecchi et a1 1972) driven by external fields. 

Before beginning the discussion of the problem, we recall that the Raman-Nath 
equations belong to a diff erential-difference class of equations. A very simplified 
version of the RN equations (Dattoli and Renieri 1984, Bosco and Dattoli 1983, Ciocci 
et al 1984, Dattoki et a1 1984) can be given in the form 

idCf /dr=RIC,+l+Cf- l ]  ( l a )  

i dC,/d.r=fl[(l+l)'/ 'C,+, + 11/2C,-l] (1b) 
i dC,/dr = n [ ( n +  I +  1)1/2C1+1 +(n+ l)1'2C,-l] (IC) 

with the initial conditions C,(O) = n is a known constant and n is a positive integer. 
The solutions of equations ( lu)-( lc) ,  found by means of the operatorial techniques 
developed in (Dattoli and Renieri 1984, Bosco and Dattoli 1983, Ciocci et a1 1984 
and Dattoli et al 1984), are respectively 

Cf = (-~)'J!(~cIT) (2a)  

C, = (-i)'(/!)-'/' exp(-hR2T2)(nr)' (2b) 

Cf = (-i)'[n!/(n + 1)!]"*(n7)' e x p ( - @ ' ~ ~ ) ~ ! , [ ( i ~ ~ ) ~ ]  (2c) 
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where J , (x)  is the Ith Bessel function of the first kind, and LL(x) are the generalised 
Laguerre polynomials. Solution (2a)  is a simple expression, in terms of Bessel func- 
tions. The second solution is written in terms of Charlier-Poisson polynomials (Szego 
1959). The third solution is more complicated than the first two, which can, in fact, 
be considered special limiting cases of ( 2 c )  (Ciocci er a1 1984, Dattoli er a1 1984). 

The equation we would like to discuss in this paper is in the form 

i dC,/dT=R{[(I+ l)(n--- I)]1’2Cl+l+[I(n-- I +  l)]1’2Cl-l} (3) 

with the initial conditions C,(O) = 6/,”. The reason why we have named equation (3) 
an SRN equation will be made clear in the following. 

In order to be consistent with the previous treatment, we can redefine the unknown 
functions Cf(T) as follows 

C,(x) = (--i),M,(x) (4) 

dMl/dx = { - [ ( I +  l ) ( ~ -  I)]1’2M/+l + [ I (  n- - I +  l)]1’2Ml-1}. ( 5 )  

The structure of this equation is complicated by products in the square roots, which 
are more involved than the products present in (2a)-(2c). One way of approaching 
( 5 )  in a more useful fashion can be obtained by recalling the harmonic operators used 
in deriving ( l b )  and ( IC) ,  and by generalising that procedure. We can introduce 
coupled creation-annihilation operators (a:,  a?) and (a+, a-), defined by their oper- 
ation on the ‘states’ M,: 

where x = and Ml(0) = ifSf,o. Therefore, we have 

a;a-M, = [( I + 1)( n- - I)]1/2M,+l 

a?a+M, =[ l (n- -  I +  l)]1’2Mf-l. 

Equation (5) can now be expressed in the form 

dM,/dx = - [U=U- - ak+]M/. (7) 
By introducing the previous set of coupled harmonic oscillators we have only 

apparently simplified the problem. We can, however, use Schwinger’s technique ( 1965) 
to transform the coupled bosonic operators into angular momentum operators J+, J-, 
J,, defined as 

J+ = a l a -  (8) 

dMl/dx=-(J+-J-)MI. (9) 

J- = a’a, J, = 4[ U U + - U T U  -1. 
Equation (7) can now be written in the form 

This procedure explains why equation (3) was named an SRN equation. 
The formal solution to (8) is easily found to be 

Mf(x) =exp[-(1,- J-)x]M,(O). (10) 
In order to present its explicit analytical solution, it is necessary to disentangle the 
exponentials by considering the ordering properties of the operators J,, J- and J,. 
These operators are the generators of the ‘simple split three-dimensional’ Lie algebra, 
with commutators 

[- J-, J+] = 2 J, [-J-, 2Jz]=-2J- [J+,2JZ]=-2J+. (11) 
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Using Kirzhnits’ procedure (8a)-(86), we can disentangle the exponents in (10) and 
we obtain 

(12) exp[-x(-J- + J+)1= exp[gl(x)J+l exp[2g2(x)JZ1 exp[-gdx)J-I 
where the three functions gi(x) are defined as 

gl(x) = g3(x) =tan x g2(  x) = -In cos x. (13) 

Expanding the exponentials, and using rules (6), we obtain 
1/2 

C,(x) = ( - i l l (  ‘i) (tan x)’ (cos x)“- (14) 

which is the binomial generalisation of the Poisson-Charlier polynomials. 

creation-annihilation operators. It may be easily shown that in this limit 
In the very large n- limit, the three-dimensional Lie algebra reduces to that of the 

= g2(x) = -x g2(x) = tx’. (15) 

Therefore, Kirzhnits’ formula (8a)  reduces to the well known Baker-Haussdorf for- 
mula, and, in the large n- limit, we find 

~ ‘ ( 7 )  = (-i)’(I!)-1’2(fiT)’ exp[ - i ( f i~ )~ I  (16) 
where fi = fl(n-)’I2. This is the same result as that shown in ( l b ) .  We have considered 
a special case, that may be interpreted as the interaction between a grounded oscillator 
and an excited oscillator. As a result of this interaction, the first oscillator is excited 
at the expense of the second one. 

We will now examine the case in which both oscillators have already been excited. 
The corresponding differential equation is 

d C l / d ~ = R { [ ( n + + I +  l ) (n- -  /)]‘/’C/,1+[(n++ I ) ( K -  I +  l)]1’2C/-l}, (17) 

can be obtained by using a direct generalisation of the procedures discussed earlier, 
and can be expressed in the form 

It is straightforward to verify that, in the n+=O limit, (18) reduces to (14). On the 
other hand, in the very large n- case, (14) can be expressed in the form 

(19) 

Taking the large n+ limit in (19), and using Laguerre polynomials’ asymptotic 

C, = (--i)’(fiT)’ exp[-$(fi~)~][n+!/  (n+ + I) !I’”~fi ,[(fi~)’]  
i.e. solution (2c). 

properties, we find 

C, - ( - i ) ’ ~ , [ 2 6 ~ ]  (20)  
where fi = (n+n-)1/2R, which is precisely equation (2a) .  We have shown that (17)  is 
the most general form of the equation considered in this letter. All the solutions 
discussed before are, in fact, a particular case of the solution of equation (17).  

In a forthcoming paper we will discuss a more complicated form of the equation 
we have discussed, namely 

~dC~/d~=(~+~I)~C~+fl{[(~+l)(n--1)]”2C~+,+[~(n--f+1)]’~2C,~l} (21) 
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with the usual initial conditions C,(O) = 
of the stimulated Compton scattering. 

This equation is relevant to the analysis 

It is a pleasure to thank W B Colson, J Gallardo, A Renieri and C LoSurdo for the 
discussions we had with them on this problem. One of the authors (GD) would like 
to acknowledge the financial support from UCSB Quantum Institute, where this work 
was completed. 
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